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Let Ln(f, x) denote the Feller operator where I is a function of bounded varia
tion. The rates of convergence are determined by estimating /Ln(f, x) - l(x)1 in
terms of certain bounds. These results extend and sharpen the results of Cheng
[J. Approx. Theory 39 (1983), 259-274] for Bernstein polynomials. Several classical
operators are discussed as examples. © 1989 AcademIc Press. Inc

1. INTRODUCTION

For f(x) on [0, 1], let Bn(f, x) be the Bernstein polynomial defined by

n= 1, 2, .... (1.1 )

Herzog and Hill [4] have shown that, if x is a point of discontinuity of the
first kind, then

lim Bn(f' x) = (f(x +) + f(x -) )/2.
n .... CLJ

(1.2)

Consequently, if f is a function of bounded vanatIOn on [0, 1]
(fEBV[O, 1]) then (1.2) holds for all XE(O, 1). Cheng [2] estimated the
rate of convergence of Bn(f' x) for f E BV[O, 1] by proving the following
result.
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(1.3 )

THEOREM 1. Let f E BV[O, 1] and let V [a,b](J) represent the total
variation off on [a, b]. Then for every x E (0, 1) and n ~ K I(x) we have

- Kix) ~ K 3(x)]
1BnCf, x)- f(x)1 ~-- ~ Vq(gJ +---w- (x),

n k~l n

where !t=[x-x/jk,x+(1-x)/jk], K I (x)=(3/(x(1-x)W, K 2(x)=
3/(x(1- x)), K 3(x) = 18(x( 1 - x)) -5/2, J(x) = (f(x +) + f(x - ))/2, ](x) =
If(x+) - f(x- )1, and

if x<t~l

if t=x

if O~ t<x.

Although K 2( x) could be improved, the first term on the right of (1.3) is
asymptotically sharp as shown by Cheng [2]. However, the second term
on the right of (1.3) can be improved considerably.

In this paper (1.3) is extended in three ways. We provide a modified form
of (1.3) which will (i) hold for all n, (ii) be asymptotically sharp, (iii) and
hold for a more general class of operators including the classical operators
such as Bernstein, Szasz, Baskakov, Gamma, and Weierstrass operators.

We shall consider the following operator due to Feller [3]. Let
{Xn , n ~ 1} be a sequence of independent and identically distributed
random variables with finite variance such that E(Xd = x E 1£ R =
(- 00, (0), Var(XI ) = (J'2(X) > O. Set Sn = Xl + X2+ ... + Xn. For a func
tion j, define the approximation operator as

Ln(j,x)=E{f(Sn/n)} = roo f(t/n)dFnjt), (1.4)
-oc

where Fn,At) is the distribution function (df) of Sn and If I is
Fn,x-integrable. Khan [5,6] provided the properties of Ln(f, x) forfE C(I).
In this paper we consider f E BV(I).

Section 2 provided the main result. Some special cases of the main result
are listed in Section 3.

2. MAIN RESULTS

Throughout it is assumed that (J'2(X) > 0, otherwise one gets a trivial
degenerate case. Also for the rate of convergence of Ln(j, x) to J(x) it is
assumed that EIXl 1

3 < 00. Iff E BV[a, b] where - 00 < a < b < 00 then one
can extend f over (- 00, (0) by f(t) = f(a) for t < a and f(t) = f(b) for
t > b. Therefore the extendedf E BV( - 00, (0). Throughout we shall use the
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notation f for both f and its extended version interchangeably. Further
more, unless otherwise stated, it will be assumed that f is normalized. The
main result can be stated as follows:

THEOREM 2. Let f E BV( - 00, 00). Then for every x E ( - 00, 00) and all
n = 1, 2, ... for the Feller operator (1.4) we have

where h= [x-11ft, x+ 11ft], k= 1, 2, ..., n, 10 = (-00,00), P(x)=
2o.2(x) + 1, Q(x)=2EIXI-xI 3/tr3(X), f(x) = (f(x+)+f(x-»/2, ](x)=
If(x+)- f(x-)I, and

{

f(t)- f(x+)

gAt)= 0
f(t) - f(x-)

if t>x

if t=x
if t< x.

(2.2)

Furthermore, (2.1) is asymptotically sharp whenfEBV( -00,00) and Fljt)
is either absolutely continuous with respect to the Lebesgue measure or is a
lattice point distribution and x is a lattice point.

Let M n= {t: P(Snln:::;, t) =P(Snln ~ t)}.

COROLLARY 1. In Theorem 2 if x E M n then

(2.3 )

regardless of the size of the saltus offat x.

In particular, if FI,At) has a symmetric (about x) density then (2.3)
holds. This result is useful for the Weierstrass operator.

COROLLARY 2. In Theorem 2 if f is normalized everywhere except at
t = x then the following modification of (2.1) can be made;

where lex) = f(x) - lex).

COROLLARY 3. In Theorem 2 if f is normalized everywhere except at
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(2.4 )

t=x, xEMI1 , and F1jt) is absolutely continuous with respect to the
Lebesgue measure then

The proofs of the theorem and the corollaries will be based on the
following theorem and lemmas. Theorem 3 is the well-known Berry-Esseen
bound for the classical central limit theorem of probability theory. Its proof
and further discussion can be found in Loeve [7, p.300], Feller [3,
p. 515], and Shiryayev [8, p.342].

THEOREM 3. If EIX l l
3 < C() then there exists a numerical constant r,

(2n)-1/2 ~ T < 0.8, such that for all n = 1, 2, ... and all t

IF:At)"':' G*(t)1 ~ TElX1 - x
13

,
~ a3(x)

where F~'.x(t) is the df of j;z(SI1/n-x)ja(x) and G*(t) is the df of the
standard normal random variable, i.e.,

G*(t) = (2n)-1/2r exp( -u2/2) duo (2.5)
- 00

LEMMA 1. Let sgnAt) be defined as

sgnAI)~ {~
if t>x

if t=x (2.6)

-1 if t<x.

Then

ILI1(sgnx ' x)1 ~ {~(X)/j;z if xEM"

if xrf:M",

where R(x) = 5rEIXl _xI 3/a 3(x).

Proof Clearly L I1(sgn x ,x)=P(S,,/n>x)-P(S,,/n<x)=O if xEMn . If
xrtM", we have

Thus,

IL,,(sgnx , x)1 ~ 2IF:'AO) - G*(O)j + IF:'AO) - F:'AO-)I (2.7)
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Also,

and
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if F:'AO-) > ~

if F:'AO-)<~,

and

(2.10)

By Lemma 1 (2.7) through (2.10) the result follows.

The following lemma is useful for the proof of Corollary 2. In this case,
f is not necessarily normalized at t = x.

LEMMA 2. Let bx(t) be defined as follows:

if t=x
if t i= x.

Then

if x is a point ofcontinuity ofFn,At)

otherwise,

where R(x) is provided in Lemma 1 and En-At) is the df of Sjn.

Proof If x is a point of continuity of En,At), then

Otherwise,

Now, by (2.8), (2.9), and (2.10) the lemma follows.
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LEMMA 3. Let gAt) E BV( - 00,(0) such that gAt) = 0 at t = x. Then for
all n = 1, 2, ...

where P(x) = 2(T2(X) + 1, h = [x - k~ 1/2, X+ k~ 1/2J, k = 1, 2, ..., n, and
/0 = ( - 00, (0).

Proof The proof of this lemma is based on the method of Bojanic and
Vuilleumier [1] (see Cheng [2] also). We will denote V[a,b](gx) by VCa,b]
for short. Consider the following three integrals separately,

Ln(gx, x) = ([00 + I: + tOO) gAt) dFn,At),

where Fn,x(t) is the dfof Sn/n, lX=x-l/~, and f3=x+ 1/~. Now,

II: gAt) dFnjt)! ~ I: IgAt) - gAx)1 dFn,x(t) ~ VIn • (2.12)

By integration by parts we have

where Fnx(t) is the normalized form of Fnx(t). Now, t ~ (J. < x,
Id( - gAt))1 ~dl- VCt,x])' Also Fnjt) ~ Fn,At) ~ n '-1(T2(X)(t - x) -2 for all
t ~ IX by Chebyshev's inequality. Therefore,

(2.13 )

Now

(2.14)

where for k=O we take VCx - k -l/2,X] = V(~oo,x] Hence, by (2.13), (2.14),
and (2.15) we have

640/58/1-7
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(2.16)

On the other hand,

where Sn,At) = 1- Fnjt) = P(Sn/n > t) is the left continuous, nonincreas
ing survival function. Again, integrating by parts, applying Chebyshev's
inequality, and repeating (2.13), (2.14), (2.15), and (2.16) we have

(2.17)

where for k = °we take V[x,X+k-1/2] = V[x,co)' Combining (2.12), (2.16),
and (2.17) we get

This completes the proof of Lemma 3.

Proof of Theorem 2. First note that for all t

f(t) = gAt) +J(x) + !(f(x+) - f(x-)) sgnAt),

where gAt) and sgnAt) are given by (2.2) and (2.6), respectively. By
linearity of the operator, the triangular inequality, and Lemmas 1 and 3 the
bound follows by taking Q(x) = R(x)/2. To show the sharpness of the
asymptotic rate of convergence, consider the functions

where 8> 0, and

if t E [x - 8, X+ 8]

if t¢[X-8,X+8],

if t >x
if t=x
if t < x.

(2.18 )

(2.19)



ON RATE OF CONVERGENCE

It is easy to show (see Khan [6] for a more general result) that

lim n1/2EjSn/n-xl =j2Fr(J(x).
n~ CD

97

By Chebyshev's inequality,

An = j;I eP{ ISn/n - xl> e} --t 0 as n -+ 00,

and by the Cauchy-Schwarz and Chebyshev inequalities

Therefore,

as n --t 00.

Therefore for sufficiently large n,

n

I VIJgJ~tl+vj;I,
k=O

where tl and v are constants. Therefore the first term on the right side of
(2.1) is asymptotically sharp for p(t). Similarly consider q(t). Now,
q(x) = q(x), gAt) == 0 and

ILn(q, x)-q(x)1 = !ILn(sgn x , x)1

or

ILn(q, x) - q(x)1 = JF:'AO) - G*(O) - (!)P(Sn/n = x)l. (2.20)

Now it is well known (d. Feller [3, p. 512]) that if F1,At) is absolutely
continuous with respect to the Lebesgue measure then
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uniformly in t, where g*(t) is the first derivative of G*(t). Therefore, for the
case when F1jt) is absolutely continuous with respect to the Lebesgue
measure, P(Snln = x) = 0, and the asymptotic sharpness of the second term
in (2.1) follows. Furthermore, if F1,x(t) is a lattice distribution, then (2.20)
reduces to

ILAq, x) - q(x)1 = IFnjO) - G*(O)/,

where FnjO) = (F:'x(O) + F;,x(O- ))/2. Again it is well known (Feller [3,
p. 514) that (2.21) holds for the lattice distribution where F;').(t) is replaced
by Fn,At) and t is a lattice point. Consequently, the asymptotic sharpness
of the bound follows. This completes the proof of Theorem 2.

The proof of Corollary 1 is obvious. To prove Corollary 2, note that for
all t

Jet) = gAt) +J(x) + i(f(x+) - j(x-)) sgnAt) +J(x) bx(t),

where gAt) and sgnAt) are given by (2.2) and (2.6), respectively, and bAt)
is provided in Lemma 2 and J(x) = j(x) - J(x). Now the proof of the
corollary is straightforward by using Lemma 2. The proof of Corollary 3 is
also straightforward.

3. SPECIAL CASES

In the following we provide a few examples for the classical operators.
The emphasis is on the explicit values of P(x) and Q(x) in each case.

3.1. Bernstein Operator

Let P(X1 = 1) =X= 1- P(X1 = 0), XE (0,1). Then

Now, a2(x) = x(l- x) and EIX1 - xl 3 = a2(x)(2x2
- 2x + 1). Therefore,

_ 2x(1-x)+1 n 2(2x2 -2x+l)
IBn(f,x)-j(x)l~ L V!k(gx)+ J lex) (3.1)

n k~O nx(l- x)

We may remark in passing that I k =[x-k- 1/2
, x+k- 1/2J could be

replaced by It = [x - xk -1/2, x + (1 - x) k -1/2J and that (3.1) would be
modified as
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where K 2(x) is given in Theorem 1 and n ~ 1. This result improves the
bound obtained by Cheng (Theorem 1).

3.2. Szasz Operator

Let P(Xj =j)=e- xx J(j!)-1, j=O, 1, .... Then we obtain the Szasz
operator Sn(f, x)

wheref(t) is defined over [0, (0). Now, (J"2(X)=X and

[x] xk
EIXj-xI3=x+2e~xL: (X-k)3k'!'

k=O .

Therefore, if f E BV[O, (0) then for all x E (0, 00 ) we have

_ 2x+ 1 n 2EiXj _x1 3

\Sn(j~x)-f(x)\,;::;-- L: Vh(gx)+ ;: ](x). (3.3)
n k=O X3/2 V n

One could use a simple bound for EIXj - x1 3 ,;::; 8x3+ 6x2 + x to have

3.3. Baskakov Operator

Now let P(Xj = j) = 1/(1 + x)(x/(l + x))1, j = 0, 1, ..., X E (0,00). In this
case, (1.4) defines the Baskakov operator m;(f, x) as follows:

B,;(f, x) = (1 +x)-n ~ f(k/n) (n +k-l)(_X_)k. (3.4)
k~O k l+x

Now (J"2(X) = x(1 + x) and
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Again one could use the bound EIXI -xI 3::::; 16x3+9x2+x to obtain

3.4. Gamma Operator

Let Xl have probability density over (0, 00)

if y>o
if y::::; 0.

Then (1.4) defines the Gamma operator

Gn(f, x) = (nx~~ )! r' f(y/n) yn -Ie - y/x dy.

Now (T2(X)=X2 and EJXI -xJ3=2x3(6/e-1). Hence, for any
f E BV[O, 00) and x E (0, 00 ) we have

_ 2x2 +1 n 4(6/e-l)-
IGnCf, x)-f(x)1 ::::;-- L V!k(gJ+ r. f(x). (3.6)

n k=O yin

3.5. Weierstrass Operator

Let Xl have probability density defined over (- 00, 00) by g*(y - x)
where g*(y) is the derivative of G*(y) given in (2.5). Then Ln(f, x) reduces
to the Weierstrass operator

W,,(J, x)=~f~oo f(x + u) exp( - (nu2)/2) duo

Now, (T2(X) = 1 and by Corollary 1 we have

for f E BV( - 00, 00) and x E (- 00, 00) regardless of the size of the saltus of
fatx.
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