On the Rate of Convergence of Some Operators on Functions of Bounded Variation

SHUN-SHENG GUO

Hebei Teachers University, Shijazhang, Hebei, China

AND

MOHAMMAD KAZIM KHAN

Department of Mathematical Sciences, Kent State University, Kent, Ohio 44242, U.S.A.

Communicated by R. Bojanic

Received September 4, 1987

Let $L_n(f, x)$ denote the Feller operator where f is a function of bounded variation. The rates of convergence are determined by estimating $|L_n(f, x) - f(x)|$ in terms of certain bounds. These results extend and sharpen the results of Cheng [J. Approx. Theory **39** (1983), 259-274] for Bernstein polynomials. Several classical operators are discussed as examples. © 1989 Academic Press, Inc

1. INTRODUCTION

For f(x) on [0, 1], let $B_n(f, x)$ be the Bernstein polynomial defined by

$$B_n(f, x) = \sum_{k=0}^n f(k/n) \binom{n}{k} x^k (1-x)^{n-k}, \qquad n = 1, 2, \dots.$$
(1.1)

Herzog and Hill [4] have shown that, if x is a point of discontinuity of the first kind, then

$$\lim_{n \to \infty} B_n(f, x) = (f(x^+) + f(x^-))/2.$$
(1.2)

Consequently, if f is a function of bounded variation on [0, 1] $(f \in BV[0, 1])$ then (1.2) holds for all $x \in (0, 1)$. Cheng [2] estimated the rate of convergence of $B_n(f, x)$ for $f \in BV[0, 1]$ by proving the following result.

0021-9045/89 \$3.00

THEOREM 1. Let $f \in BV[0, 1]$ and let $V_{[a,b]}(f)$ represent the total variation of f on [a, b]. Then for every $x \in (0, 1)$ and $n \ge K_1(x)$ we have

$$|B_n(f,x) - \bar{f}(x)| \leq \frac{K_2(x)}{n} \sum_{k=1}^n V_{I_k^*}(g_x) + \frac{K_3(x)}{n^{1/6}} \tilde{f}(x),$$
(1.3)

where $I_k^* = [x - x/\sqrt{k}, x + (1 - x)/\sqrt{k}], K_1(x) = (3/(x(1 - x)))^8, K_2(x) = 3/(x(1 - x)), K_3(x) = 18(x(1 - x))^{-5/2}, f(x) = (f(x^+) + f(x^-))/2, f(x) = |f(x^+) - f(x^-)|, and$

$$g_x(t) = \begin{cases} f(t) - f(x^+) & \text{if } x < t \le 1 \\ 0 & \text{if } t = x \\ f(t) - f(x^-) & \text{if } 0 \le t < x. \end{cases}$$

Although $K_2(x)$ could be improved, the first term on the right of (1.3) is asymptotically sharp as shown by Cheng [2]. However, the second term on the right of (1.3) can be improved considerably.

In this paper (1.3) is extended in three ways. We provide a modified form of (1.3) which will (i) hold for all n, (ii) be asymptotically sharp, (iii) and hold for a more general class of operators including the classical operators such as Bernstein, Szász, Baskakov, Gamma, and Weierstrass operators.

We shall consider the following operator due to Feller [3]. Let $\{X_n, n \ge 1\}$ be a sequence of independent and identically distributed random variables with finite variance such that $E(X_1) = x \in I \subseteq R = (-\infty, \infty)$, $Var(X_1) = \sigma^2(x) > 0$. Set $S_n = X_1 + X_2 + \cdots + X_n$. For a function f, define the approximation operator as

$$L_n(f, x) = E\{f(S_n/n)\} = \int_{-\infty}^{\infty} f(t/n) \, dF_{n,x}(t), \tag{1.4}$$

where $F_{n,x}(t)$ is the distribution function (df) of S_n and |f| is $F_{n,x}$ -integrable. Khan [5, 6] provided the properties of $L_n(f, x)$ for $f \in C(I)$. In this paper we consider $f \in BV(I)$.

Section 2 provided the main result. Some special cases of the main result are listed in Section 3.

2. MAIN RESULTS

Throughout it is assumed that $\sigma^2(x) > 0$, otherwise one gets a trivial degenerate case. Also for the rate of convergence of $L_n(f, x)$ to $\bar{f}(x)$ it is assumed that $E|X_1|^3 < \infty$. If $f \in BV[a, b]$ where $-\infty < a < b < \infty$ then one can extend f over $(-\infty, \infty)$ by f(t) = f(a) for t < a and f(t) = f(b) for t > b. Therefore the extended $f \in BV(-\infty, \infty)$. Throughout we shall use the

notation f for both f and its extended version interchangeably. Furthermore, unless otherwise stated, it will be assumed that f is normalized. The main result can be stated as follows:

THEOREM 2. Let $f \in BV(-\infty, \infty)$. Then for every $x \in (-\infty, \infty)$ and all n = 1, 2, ... for the Feller operator (1.4) we have

$$|L_n(f,x) - \bar{f}(x)| \leq \frac{P(x)}{n} \sum_{k=0}^n V_{I_k}(g_x) + \frac{Q(x)}{n^{1/2}} \tilde{f}(x),$$
(2.1)

where $I_k = [x - 1/\sqrt{k}, x + 1/\sqrt{k}], k = 1, 2, ..., n, I_0 = (-\infty, \infty), P(x) = 2\sigma^2(x) + 1, Q(x) = 2E|X_1 - x|^3/\sigma^3(x), f(x) = (f(x^+) + f(x^-))/2, f(x) = |f(x^+) - f(x^-)|, and$

$$g_{x}(t) = \begin{cases} f(t) - f(x^{+}) & \text{if } t > x \\ 0 & \text{if } t = x \\ f(t) - f(x^{-}) & \text{if } t < x. \end{cases}$$
(2.2)

Furthermore, (2.1) is asymptotically sharp when $f \in BV(-\infty, \infty)$ and $F_{1,x}(t)$ is either absolutely continuous with respect to the Lebesgue measure or is a lattice point distribution and x is a lattice point.

Let $M_n = \{t: P(S_n/n \le t) = P(S_n/n \ge t)\}.$

COROLLARY 1. In Theorem 2 if $x \in M_n$ then

$$|L_n(f,x) - \bar{f}(x)| \leq \frac{P(x)}{n} \sum_{k=0}^n V_{I_k}(g_x)$$
(2.3)

regardless of the size of the saltus of f at x.

In particular, if $F_{1,x}(t)$ has a symmetric (about x) density then (2.3) holds. This result is useful for the Weierstrass operator.

COROLLARY 2. In Theorem 2 if f is normalized everywhere except at t = x then the following modification of (2.1) can be made;

$$|L_n(f, x) - \bar{f}(x)| \leq \frac{P(x)}{n} \sum_{k=0}^n V_{I_k}(g_x) + \frac{Q(x)}{n^{1/2}} (\tilde{f}(x) + 1.2|\hat{f}(x)|),$$

where $\hat{f}(x) = f(x) - \bar{f}(x)$.

COROLLARY 3. In Theorem 2 if f is normalized everywhere except at

t = x, $x \in M_n$, and $F_{1,x}(t)$ is absolutely continuous with respect to the Lebesgue measure then

$$|L_n(f, x) - \bar{f}(x)| \leq \frac{P(x)}{n} \sum_{k=0}^n V_{I_k}(g_x).$$

The proofs of the theorem and the corollaries will be based on the following theorem and lemmas. Theorem 3 is the well-known Berry-Esseen bound for the classical central limit theorem of probability theory. Its proof and further discussion can be found in Loève [7, p. 300], Feller [3, p. 515], and Shiryayev [8, p. 342].

THEOREM 3. If $E|X_1|^3 < \infty$ then there exists a numerical constant τ , $(2\pi)^{-1/2} \leq \tau < 0.8$, such that for all n = 1, 2, ... and all t

$$|F_{n,x}^{*}(t) - G^{*}(t)| \leq \frac{\tau E |X_1 - x|^3}{\sqrt{n} \, \sigma^3(x)},\tag{2.4}$$

where $F_{n,x}^*(t)$ is the df of $\sqrt{n(S_n/n-x)}/\sigma(x)$ and $G^*(t)$ is the df of the standard normal random variable, i.e.,

$$G^*(t) = (2\pi)^{-1/2} \int_{-\infty}^t \exp(-u^2/2) \, du.$$
 (2.5)

LEMMA 1. Let $sgn_{x}(t)$ be defined as

$$\operatorname{sgn}_{x}(t) = \begin{cases} 1 & \text{if } t > x \\ 0 & \text{if } t = x \\ -1 & \text{if } t < x. \end{cases}$$
(2.6)

Then

$$|L_n(\operatorname{sgn}_x, x)| \leq \begin{cases} 0 & \text{if } x \in M_n \\ R(x)/\sqrt{n} & \text{if } x \notin M_n, \end{cases}$$

where $R(x) = 5\tau E |X_1 - x|^3 / \sigma^3(x)$.

Proof. Clearly $L_n(\operatorname{sgn}_x, x) = P(S_n/n > x) - P(S_n/n < x) = 0$ if $x \in M_n$. If $x \notin M_n$, we have

$$L_n(\operatorname{sgn}_x, x) = 1 - 2F_{n,x}^*(0) + P(S_n/n = x).$$

Thus,

$$|L_n(\operatorname{sgn}_x, x)| \le 2|F_{n,x}^*(0) - G^*(0)| + |F_{n,x}^*(0) - F_{n,x}^*(0^-)|$$
(2.7)

Also,

$$|F_{n,x}^*(0) - F_{n,x}^*(0^-)| \le |F_{n,x}^*(0) - G^*(0)| + |F_{n,x}^*(0^-) - G^*(0)| \quad (2.8)$$

and

$$|F_{n,x}^{*}(0^{-}) - G^{*}(0)| \leq \begin{cases} |F_{n,x}^{*}(\varepsilon_{n}) - G^{*}(0)| & \text{if } F_{n,x}^{*}(0^{-}) > \frac{1}{2} \\ |F_{n,x}^{*}(-\varepsilon_{n}) - G^{*}(0)| & \text{if } F_{n,x}^{*}(0^{-}) < \frac{1}{2} \end{cases}$$

where $\varepsilon_n = (2\pi)^{1/2} \tau n^{-1/2} E |X_1 - x|^3 \sigma^{-3}(x)$. Now, $|F_{n,x}^*(\pm \varepsilon_n) - G^*(0)| \le |F_{n,x}^*(\pm \varepsilon_n) - G^*(\pm \varepsilon_n)| + |G^*(\pm \varepsilon_n) - G^*(0)|$ (2.9)

and

$$|G^*(\pm\varepsilon_n) - G^*(0)| \leq \frac{\varepsilon_n}{\sqrt{2\pi}}.$$
(2.10)

By Lemma 1 (2.7) through (2.10) the result follows.

The following lemma is useful for the proof of Corollary 2. In this case, f is not necessarily normalized at t = x.

LEMMA 2. Let $\delta_x(t)$ be defined as follows:

$$\delta_x(t) = \begin{cases} 1 & \text{if } t = x \\ 0 & \text{if } t \neq x. \end{cases}$$

Then

$$|L_n(\delta_x, x)| \leq \begin{cases} 0 & \text{if } x \text{ is a point of continuity of } \overline{F}_{n,x}(t) \\ 3R(x)/5\sqrt{n} & \text{otherwise,} \end{cases}$$

where R(x) is provided in Lemma 1 and $\overline{F}_{n,x}(t)$ is the df of S_n/n .

Proof. If x is a point of continuity of $\overline{F}_{n,x}(t)$, then

$$L_n(\delta_x, x) = P(S_n/n = x) = 0.$$

Otherwise,

$$L_n(\delta_x, x) = F_{n,x}^*(0) - F_{n,x}^*(0^-).$$

Now, by (2.8), (2.9), and (2.10) the lemma follows.

94

LEMMA 3. Let $g_x(t) \in BV(-\infty, \infty)$ such that $g_x(t) = 0$ at t = x. Then for all n = 1, 2, ...

$$|L_n(g_x, x)| \leq \frac{P(x)}{n} \sum_{k=0}^n V_{I_k}(g_x), \qquad (2.11)$$

where $P(x) = 2\sigma^2(x) + 1$, $I_k = [x - k^{-1/2}, x + k^{-1/2}]$, k = 1, 2, ..., n, and $I_0 = (-\infty, \infty)$.

Proof. The proof of this lemma is based on the method of Bojanic and Vuilleumier [1] (see Cheng [2] also). We will denote $V_{[a,b]}(g_x)$ by $V_{[a,b]}$ for short. Consider the following three integrals separately,

$$L_n(g_x, x) = \left(\int_{-\infty}^{\infty} + \int_{\alpha}^{\beta} + \int_{\beta}^{\infty}\right) g_x(t) \, d\overline{F}_{n,x}(t),$$

where $\overline{F}_{n,x}(t)$ is the df of S_n/n , $\alpha = x - 1/\sqrt{n}$, and $\beta = x + 1/\sqrt{n}$. Now,

$$\left|\int_{\alpha}^{\beta} g_{x}(t) \, d\overline{F}_{n,x}(t)\right| \leq \int_{\alpha}^{\beta} |g_{x}(t) - g_{x}(x)| \, d\overline{F}_{n,x}(t) \leq V_{I_{n}}.$$
 (2.12)

By integration by parts we have

$$\int_{-\infty}^{\alpha} g_x(t) d\overline{F}_{n,x}(t) = g_x(\alpha^+) \overline{F}_{n,x}(\alpha) + \int_{-\infty}^{\alpha} \hat{F}_{n,x}(t) d(-g_x(t)),$$

where $\hat{F}_{n,x}(t)$ is the normalized form of $\overline{F}_{n,x}(t)$. Now, $t \leq \alpha < x$, $|d(-g_x(t))| \leq d_t(-V_{[t,x]})$. Also $\hat{F}_{n,x}(t) \leq \overline{F}_{n,x}(t) \leq n^{-1}\sigma^2(x)(t-x)^{-2}$ for all $t \leq \alpha$ by Chebyshev's inequality. Therefore,

$$\left|\int_{-\infty}^{\alpha} g_{x}(t) d\overline{F}_{n,x}(t)\right| \leq V_{[\alpha,x]} \sigma^{2}(x) + \frac{\sigma^{2}(x)}{n} \int_{-\infty}^{\alpha} \frac{1}{(x-t)^{2}} d_{t}(-V_{[t,x]}). \quad (2.13)$$

Now

$$\int_{-\infty}^{\alpha} \frac{1}{(x-t)^2} d_t (-V_{[t,x]}) = -n V_{[\alpha^+,x]} + \int_{-\infty}^{\alpha} \frac{2}{(x-t)^3} V_{[t,x]} dt, \quad (2.14)$$

where $V_{[\alpha^+,x]} = \lim_{\epsilon \downarrow 0} V_{[\alpha+\epsilon,x]}$. Let $u = (x-t)^{-2}$

$$\int_{-\infty}^{\infty} \frac{2}{(x-t)^3} V_{[t,x]} dt = \int_{0}^{n} V_{[x-u^{-1/2},x]} du \leq \sum_{k=0}^{n} V_{[x-k^{-1/2},x]}, \quad (2.15)$$

where for k = 0 we take $V_{[x-k^{-1/2},x]} = V_{(-\infty,x]}$ Hence, by (2.13), (2.14), and (2.15) we have

$$\left| \int_{-\infty}^{\alpha} g_{x}(t) \, d\vec{F}_{n,x}(t) \right| \leq V_{[\alpha,x]} \, \sigma^{2}(x) + \frac{\sigma^{2}(x)}{n} \sum_{k=0}^{n} V_{[x-k^{-1/2},x]} \\ \left| \int_{-\infty}^{\alpha} g_{x}(t) \, d\vec{F}_{n,x}(t) \right| \leq \frac{2\sigma^{2}(x)}{n} \sum_{k=0}^{n} V_{[x-k^{-1/2},x]}.$$
(2.16)

On the other hand,

$$\int_{\beta}^{\infty} g_x(t) d\overline{F}_{n,x}(t) = \int_{\beta}^{\infty} g_x(t) d(-\overline{S}_{n,x}(t)),$$

where $\overline{S}_{n,x}(t) = 1 - \overline{F}_{n,x}(t) = P(S_n/n > t)$ is the left continuous, nonincreasing survival function. Again, integrating by parts, applying Chebyshev's inequality, and repeating (2.13), (2.14), (2.15), and (2.16) we have

$$\left| \int_{\beta}^{\infty} g_{x}(t) \, d\bar{F}_{n,x}(t) \right| \leq \frac{2\sigma^{2}(x)}{n} \sum_{k=0}^{n} V_{[x,x+k^{-1/2}]}, \tag{2.17}$$

where for k = 0 we take $V_{[x, x+k^{-1/2}]} = V_{[x,\infty)}$. Combining (2.12), (2.16), and (2.17) we get

$$|L_n(g_x, x)| \leq \frac{2\sigma^2(x)}{n} \sum_{k=0}^n V_{I_k} + V_{I_n} \leq \frac{2\sigma^2(x) + 1}{n} \sum_{k=0}^n V_{I_k}.$$

This completes the proof of Lemma 3.

Proof of Theorem 2. First note that for all t

$$f(t) = g_x(t) + \bar{f}(x) + \frac{1}{2}(f(x^+) - f(x^-)) \operatorname{sgn}_x(t),$$

where $g_x(t)$ and $\operatorname{sgn}_x(t)$ are given by (2.2) and (2.6), respectively. By linearity of the operator, the triangular inequality, and Lemmas 1 and 3 the bound follows by taking Q(x) = R(x)/2. To show the sharpness of the asymptotic rate of convergence, consider the functions

$$p(t) = \begin{cases} |t-x| & \text{if } t \in [x-\varepsilon, x+\varepsilon] \\ \varepsilon & \text{if } t \notin [x-\varepsilon, x+\varepsilon], \end{cases}$$
(2.18)

where $\varepsilon > 0$, and

$$q(t) = \begin{cases} 1 & \text{if } t > x \\ \frac{1}{2} & \text{if } t = x \\ 0 & \text{if } t < x. \end{cases}$$
(2.19)

It is easy to show (see Khan [6] for a more general result) that

$$\lim_{n\to\infty} n^{1/2} E |S_n/n - x| = \sqrt{2/\pi} \sigma(x).$$

By Chebyshev's inequality,

$$\lambda_n = \sqrt{n} \, \varepsilon P \{ |S_n/n - x| > \varepsilon \} \to 0 \qquad \text{as} \quad n \to \infty,$$

and by the Cauchy-Schwarz and Chebyshev inequalities

$$\sqrt{n}\int_{|t-x|>\varepsilon} |t-x| d\overline{F}_{n,x}(t) \to 0$$
 as $n \to \infty$.

Therefore,

$$\sqrt{n} |L_n(p, x) - p(x)| = \lambda_n + \sqrt{n} \int_{|t-x| \leq \varepsilon} |t-x| d\overline{F}_{n,x}(t) \to \sqrt{2/\pi} \sigma(x)$$

as $n \to \infty$. On the other hand, $p(x^+) = p(x^-) = \bar{p}(x) = 0$, $g_x(t) = p(t)$ and for sufficiently large n,

$$\sum_{k=0}^{n} V_{I_k}(g_x) = V_{(-\infty,\infty)}(g_x) + \sum_{k=1}^{\lfloor 1/\epsilon^2 \rfloor} \left(V_{I_k}(g_x) - \frac{2}{\sqrt{k}} \right) + \sum_{k=1}^{n} \frac{2}{\sqrt{k}}.$$

Therefore for sufficiently large n,

$$\sum_{k=0}^{n} V_{I_k}(g_x) \leq \mu + \nu \sqrt{n},$$

where μ and ν are constants. Therefore the first term on the right side of (2.1) is asymptotically sharp for p(t). Similarly consider q(t). Now, $q(x) = \bar{q}(x), g_x(t) \equiv 0$ and

$$|L_n(q, x) - \bar{q}(x)| = \frac{1}{2} |L_n(\operatorname{sgn}_x, x)|$$

or

$$|L_n(q, x) - \tilde{q}(x)| = |F_{n,x}^*(0) - G^*(0) - (\frac{1}{2})P(S_n/n = x)|.$$
(2.20)

Now it is well known (cf. Feller [3, p. 512]) that if $F_{1,x}(t)$ is absolutely continuous with respect to the Lebesgue measure then

$$F_{n,x}^{*}(t) - G^{*}(t) - \frac{E(X_{1} - x)^{3}}{6\sigma^{3}(x)\sqrt{n}} (1 - t^{2}) g^{*}(t) = o\left(\frac{1}{\sqrt{n}}\right)$$
(2.21)

GUO AND KHAN

uniformly in t, where $g^*(t)$ is the first derivative of $G^*(t)$. Therefore, for the case when $F_{1,x}(t)$ is absolutely continuous with respect to the Lebesgue measure, $P(S_n/n = x) = 0$, and the asymptotic sharpness of the second term in (2.1) follows. Furthermore, if $F_{1,x}(t)$ is a lattice distribution, then (2.20) reduces to

$$|L_n(q, x) - \bar{q}(x)| = |\hat{F}_{n,x}(0) - G^*(0)|,$$

where $\hat{F}_{n,x}(0) = (F_{n,x}^*(0) + F_{n,x}^*(0^-))/2$. Again it is well known (Feller [3, p. 514) that (2.21) holds for the lattice distribution where $F_{n,x}^*(t)$ is replaced by $\hat{F}_{n,x}(t)$ and t is a lattice point. Consequently, the asymptotic sharpness of the bound follows. This completes the proof of Theorem 2.

The proof of Corollary 1 is obvious. To prove Corollary 2, note that for all t

$$f(t) = g_x(t) + \bar{f}(x) + \frac{1}{2}(f(x^+) - f(x^-))\operatorname{sgn}_x(t) + \bar{f}(x)\,\delta_x(t),$$

where $g_x(t)$ and $\operatorname{sgn}_x(t)$ are given by (2.2) and (2.6), respectively, and $\delta_x(t)$ is provided in Lemma 2 and $\hat{f}(x) = f(x) - \bar{f}(x)$. Now the proof of the corollary is straightforward by using Lemma 2. The proof of Corollary 3 is also straightforward.

3. Special Cases

In the following we provide a few examples for the classical operators. The emphasis is on the explicit values of P(x) and Q(x) in each case.

3.1. Bernstein Operator

Let $P(X_1 = 1) = x = 1 - P(X_1 = 0)$, $x \in (0, 1)$. Then

$$L_n(f, x) = B_n(f, x).$$

Now, $\sigma^2(x) = x(1-x)$ and $E|X_1 - x|^3 = \sigma^2(x)(2x^2 - 2x + 1)$. Therefore,

$$|B_n(f,x) - \bar{f}(x)| \leq \frac{2x(1-x) + 1}{n} \sum_{k=0}^n V_{I_k}(g_x) + \frac{2(2x^2 - 2x + 1)}{\sqrt{nx(1-x)}} \tilde{f}(x)$$
(3.1)

We may remark in passing that $I_k = [x - k^{-1/2}, x + k^{-1/2}]$ could be replaced by $I_k^* = [x - xk^{-1/2}, x + (1 - x)k^{-1/2}]$ and that (3.1) would be modified as

$$|B_n(f,x) - \tilde{f}(x)| \leq \frac{K_2(x)}{n} \sum_{k=1}^n V_{I_k^*}(g_x) + \frac{2(2x^2 - 2x + 1)}{\sqrt{nx(1-x)}} \tilde{f}(x), \quad (3.2)$$

where $K_2(x)$ is given in Theorem 1 and $n \ge 1$. This result improves the bound obtained by Cheng (Theorem 1).

3.2. Szász Operator

Let $P(X_1 = j) = e^{-x}x^j(j!)^{-1}$, j = 0, 1, ... Then we obtain the Szász operator $S_n(f, x)$

$$L_n(f, x) = S_n(f, x) = e^{-nx} \sum_{k=0}^{\infty} f(k/n) \frac{(nx)^k}{k!},$$

where f(t) is defined over $[0, \infty)$. Now, $\sigma^2(x) = x$ and

$$E|X_1-x|^3 = x + 2e^{-x} \sum_{k=0}^{\lfloor x \rfloor} (x-k)^3 \frac{x^k}{k!}.$$

Therefore, if $f \in BV[0, \infty)$ then for all $x \in (0, \infty)$ we have

$$|S_n(f,x) - \bar{f}(x)| \leq \frac{2x+1}{n} \sum_{k=0}^n V_{I_k}(g_x) + \frac{2E|X_1 - x|^3}{x^{3/2}\sqrt{n}} \tilde{f}(x).$$
(3.3)

One could use a simple bound for $E|X_1 - x|^3 \leq 8x^3 + 6x^2 + x$ to have

$$|S_n(f,x) - \bar{f}(x)| \leq \frac{2x+1}{n} \sum_{k=0}^n V_{I_k}(g_x) + \frac{2(8x^2 + 6x + 1)}{\sqrt{nx}} \tilde{f}(x).$$

3.3. Baskakov Operator

Now let $P(X_1 = j) = 1/(1+x)(x/(1+x))^j$, $j = 0, 1, ..., x \in (0, \infty)$. In this case, (1.4) defines the Baskakov operator $B_n^*(f, x)$ as follows:

$$B_n^*(f,x) = (1+x)^{-n} \sum_{k=0}^{\infty} f(k/n) {\binom{n+k-1}{k}} {\binom{x}{1+x}}^k.$$
(3.4)

Now $\sigma^2(x) = x(1+x)$ and

$$E|X_{1}-x|^{3} = 2x^{3} + 3x^{2} + x + \frac{2}{1+x} \sum_{j=0}^{\lfloor x \rfloor} (x-j)^{3} \left(\frac{x}{1+x}\right)^{j}$$
$$|B_{n}^{*}(f,x) - \tilde{f}(x)| \leq \frac{2x(1+x)+1}{n} \sum_{k=0}^{n} V_{l_{k}}(g_{x}) + \frac{2E|X_{1}-x|^{3}}{(x(1+x))^{3/2}\sqrt{n}} \tilde{f}(x).$$
(3.5)

Again one could use the bound $E|X_1 - x|^3 \le 16x^3 + 9x^2 + x$ to obtain

$$|B_n^*(f,x) - \tilde{f}(x)| \leq \frac{2x(1+x)+1}{n} \sum_{k=0}^n V_{l_k}(g_x) + \frac{2(16x^2+9x+1)}{(1+x)^{3/2}\sqrt{nx}} \tilde{f}(x).$$

3.4. Gamma Operator

Let X_1 have probability density over $(0, \infty)$

$$f_{X_1}(y) = \begin{cases} (1/x) e^{-y/x} & \text{if } y > 0\\ 0 & \text{if } y \leq 0 \end{cases}$$

Then (1.4) defines the Gamma operator

$$G_n(f, x) = \frac{x^{-n}}{(n-1)!} \int_0^\infty f(y/n) y^{n-1} e^{-y/x} dy.$$

Now $\sigma^2(x) = x^2$ and $E|X_1 - x|^3 = 2x^3(6/e - 1)$. Hence, for any $f \in BV[0, \infty)$ and $x \in (0, \infty)$ we have

$$|G_n(f,x) - \bar{f}(x)| \leq \frac{2x^2 + 1}{n} \sum_{k=0}^n V_{I_k}(g_x) + \frac{4(6/e - 1)}{\sqrt{n}} \bar{f}(x).$$
(3.6)

3.5. Weierstrass Operator

Let X_1 have probability density defined over $(-\infty, \infty)$ by $g^*(y-x)$ where $g^*(y)$ is the derivative of $G^*(y)$ given in (2.5). Then $L_n(f, x)$ reduces to the Weierstrass operator

$$W_n(f, x) = \sqrt{\frac{n}{2\pi}} \int_{-\infty}^{\infty} f(x+u) \exp(-(nu^2)/2) \, du.$$

Now, $\sigma^2(x) = 1$ and by Corollary 1 we have

$$|W_n(f, x) - \bar{f}(x)| \leq \frac{3}{n} \sum_{k=0}^n V_{l_k}(g_x)$$

for $f \in BV(-\infty, \infty)$ and $x \in (-\infty, \infty)$ regardless of the size of the saltus of f at x.

References

- 1. R. BOJANIC AND M. VUILLEUMIER, On the rate of convergence of Fourier Legendre series of functions of bounded variation, J. Approx. Theory 31 (1981), 67-79.
- 2. F. CHENG, On the rate of convergence of Bernstein polynomials of functions of bounded variation, J. Approx. Theory 39 (1983), 259-274.

- 3. W. FELLER, "An Introduction to Probability Theory and its Applications II," Wiley, New York, 1966.
- 4. F. HERZOG AND J. D. HILL, The Bernstein polynomials for discontinuous functions, Amer. J. Math. 68 (1946), 109-124.
- R. A. KHAN, Some probabilistic methods in the theory of approximation operators, Acta. Math. Acad. Sci. Hungar. 39 (1980) 193-203.
- 6. R. A. KHAN, On the L_p norm for some approximation operators, J. Approx. Theory 45 (1985), 339–349.
- 7. M. LOÈVE, "Probability Theory I," 4th. ed., Springer-Verlag, New York/Berlin, 1977.
- 8. A. N. SHIRYAYEV, "Probability," Springer-Verlag, New York, 1984.