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Let L,(f, x) denote the Feller operator where f is a function of bounded varia-
tion. The rates of convergence are determined by estimating |L,(f, x)— f(x)| in
terms of certain bounds. These results extend and sharpen the results of Cheng
[J. Approx. Theory 39 (1983), 259-274] for Bernstein polynomials. Several classical
operators are discussed as examples.  © 1989 Academic Press, Inc

1. INTRODUCTION

For f(x) on [0, 1], let B,(f, x) be the Bernstein polynomial defined by

B,,(f,x):ff(k/n)(Z)xka—x)"-k, n=1,2 .. (L1)
k=0

Herzog and Hill [4] have shown that, if x is a point of discontinuity of the

first kind, then

Jim B,(f, x)=(f(x")+f(x7))/2. (1.2)

Consequently, if f is a function of bounded variation on [0, 1]
(fe BV0, 1]) then (1.2) holds for all xe (0, 1). Cheng [2] estimated the
rate of convergence of B,(f, x) for fe BV[0, 1] by proving the following

result.
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THEOREM 1. Let feBV[0,1] and let Vi, ,(f) represent the total
variation of f on [a, b]. Then for every xe (0, 1) and nz K,(x) we have

BD) $ y 0B850, 13
no~ n

|B,(f, %)= F(x)I <

where I = [x —x/y/k, x+ (1= x)/ /KL Ki(x)= (3/(x(1— ), Ky(x)=
3/(x(1—x)), Ka(x)=18(x(1—x))~" f(x)=(f(x*)+f(x )2 J(x)=
Y= fx ), and

fO—-fx*y if x<i<i
gx(t)= 0 l_f =X
SO =fx7) if 0<r<x

Although K,(x) could be improved, the first term on the right of (1.3) is
asymptotically sharp as shown by Cheng [2]. However, the second term
on the right of (1.3) can be improved considerably.

In this paper (1.3) is extended in three ways. We provide a modified form
of (1.3) which will (i) hold for all », (ii) be asymptotically sharp, (iii) and
hold for a more general class of operators including the classical operators
such as Bernstein, Szasz, Baskakov, Gamma, and Weierstrass operators.

We shall consider the following operator due to Feller [37]. Let
{X,,n=1} be a sequence of independent and identically distributed
random variables with finite variance such that E(X,)=xel<R=
(—o0, ), Var(X,)=0*x)>0. Set S,=X,+X,+ --- +X,. For a func-
tion f, define the approximation operator as

L %)= EUf(Sym} =] fluim) dF, (o), (14)

where F, (¢} is the distribution function (df) of §, and |f]| is
F, -integrable. Khan [5, 6] provided the properties of L,{f, x) for f e C(]).
In this paper we consider f e BV(I).

Section 2 provided the main result. Some special cases of the main result
are listed in Section 3.

2. MAIN RESULTS

Throughout it is assumed that o?(x)>0, otherwise one gets a trivial
degenerate case. Also for the rate of convergence of L (f, x) to f(x) it is
assumed that E|X,|* < co. If fe BV [a, b] where — o0 <a< b < oo then one
can extend f over (—o0, o) by f(t)=f(a) for t<a and f(t)= f{b) for
t > b. Therefore the extended f e BV(— o0, o). Throughout we shall use the
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notation f for both f and its extended version interchangeably. Further-
more, unless otherwise stated, it will be assumed that f is normalized. The
main result can be stated as follows:

THEOREM 2. Let f€ BV(— o0, cv). Then for every xe (— o0, o0) and all
n=1,2,.. for the Feller operator (1.4) we have

L= <T2 § v+ SR 0. e

where I=[x—1//k x+ 1. /k], k=1,2,.,n, Iy=(—00, ), P(x)=
20%(x)+1, Q(x)=2E|X,—x|*/o’(x), f(x)—(f(x+)+f(x N2, Flx)=
[f(x*)~f(x7), and
SO~f(xF) i t>x
gt)=40 if t=x (2.2)
fO—fx7)  if r<x

Furthermore, (2.1) is asymptotically sharp when f € BV(— w0, ) and F, (t)
is either absolutely continuous with respect to the Lebesgue measure or is a
lattice point distribution and x is a lattice point.

Let M,= {t: P(S,/n<t)=P(S,/n=1)}.

CoroOLLARY 1. In Theorem?2 if xe M, then
IL,(f, x) = f(x) < Z (&) (2.3)

regardless of the size of the saltus of f at x.

In particular, if F, (#) has a symmetric (about x) density then (2.3)
holds. This result is useful for the Weierstrass operator.

COROLLARY 2. In Theorem?2 if [ is normalized everywhere except at
t = x then the following modification of (2.1) can be made;

L) = F0N < 5 70+ 22 (7 + 121700,

where f(x)= f(x)~ f(x).

COROLLARY 3. In Theorem?2 if f is normalized everywhere except at
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t=x, xeM,, and F, (1) is absolutely continuous with respect 1o the
Lebesgue measure then

i P -
L - f <22 3 Ve

The proofs of the theorem and the corollaries will be based on the
following theorem and lemmas. Theorem 3 is the well-known Berry-Esseen
bound for the classical central limit theorem of probability theory. Its proof
and further discussion can be found in Loéve [7, p.300], Felier {3,
p. 5157, and Shiryayev [8, p.342].

THEOREM 3. If E\X,|’ <00 then there exists a numerical constant 1,
(2n) Y2 <1< 0.8, such that for all n=1,2, ... and all ¢

tE\X, — x|’
Jnoix)

where F¥ (t) is the df of \/Z(Sn/n—x)/a(x) and G*(t) is the df of the
standard normal random variable, i.e.,

[F2.(1)—G*(1)| < (2.4)

G*(1)=(2n) j " exp(—u22) du. (2.5)

LemMA 1. Ler sgn (t) be defined as

1 if t>x
sgn(1)=< 0 if t=x (2.6)
—~1 if t<x

Then

0 if xeM,
ILn(Sgnx’ X)IS{R(X)/\/E # xéMnf

where R(x)=5tE|X, — x|*/a®(x).

Proof. Clearly L, (sgn,, x)=P(S,/n>x)—P(S,/n<x)=01i xeM,. If
x¢ M,, we have

Ln(Sgnxa X) =1 ZF::x(O) + P(Sn/n = X).
Thus,

IL,(sgn., X)| <2|F;}(0)— G¥*(0)] + |F3(0)— F¥.(07)] (27)
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Also,
[FAx(0) = FX (07N < |FEA(0) = G*(0)[ + [FF(07)—G*(0)| (2.8)

and

|F7t(e,) — G*(0)] if Fri07)>3

P =GO < T R o

where ¢, = (2n)?tn~2E| X, — x|? 6 73(x). Now,

[Fy£e,)— G*0) < |Ff(Le,)— G*(£e,)| +|G*(£e,)—G*(0) (29)
and

1G*(+2,) — G*(0)] < —2=, (2.10)

NG

By Lemma 1 (2.7) through (2.10) the result follows.

The following lemma is useful for the proof of Corollary 2. In this case,
f'is not necessarily normalized at ¢ =x.

LEMMA 2. Let 8.(t) be defined as follows:

1 if t=x
5"“)—{0 if t#x

Then

if x is a point of continuity of F, (1)

0
ILn(8> X)| < {3R(x)/5\/l_1 otherwise,

where R(x) is provided in Lemma 1 and F, .(t) is the df of S,/n.
Proof. If x is a point of continuity of F, .(¢), then
L(6,,x)=P(S,/mn=x)=0.
Otherwise,

Ly(0:, x)=FZ(0)—F7.(07).

Now, by (2.8), (2.9), and (2.10) the lemma follows.
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LeMMA 3. Let g, (t)e BV(~ o0, o0) such that g (¢t)=0 at t =x. Then for
alln=12,..

L(gux) <X ff Z (2.11)

where P(x)=20%x)+1, I,=[x—k " x+k ], k=1,2,..,n and
I():(_‘(X), OO).

Proof. The proof of this lemma is based on the method of Bojanic and
Vuilleumier [1] (see Cheng [2] also). We will denote V¢, ,1(g,) by Vis 13
for short. Consider the following three integrals separately,

o B [e's] _
Ligen)=(]"_+["+[) eunap,o,
where F, () is the df of S,/n, a=x~— 1/\/1_1, and f=x+ 1/\/1;. Now,
B _ B —
Ua gx(1) an,x(t)\ SJ lg. (1) — g () dF, (1)< V. (2.12)

By integration by parts we have

|| e dF =g B+ [ B, (o) d(—g0),

where ﬁ",,,x(t) is the normalized form of F, (r). Now, r<a<y,
id( _gx(t))’ < dt( - V[t,x])' AISO Fn,x(t) < Fn,x([) < nﬁlaz(x)(l - x)'z for all
t <o by Chebyshev’s inequality. Therefore,

x - ?(x) r* 1
2 —
J! gx(t) an,x(t)‘ < V[ac, x]d (X) + n J_OC (X _ t)z d!( V[taX])' (213>
Now
| ot Vea= =gt oo Viads 214)

where Vi, g=lim, o Vi, ..y Let u=(x—1¢)">
* 2
f, G Ve di= f Visownm dus Z Viewimtexy, (215)

where for k=0 we take Vi, ,-12,3=V_, .5 Hence, by (2.13), (2.14),
and (2.15) we have

640/58/1-7
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2(X)

|| e dF () < Vi () +

Z V[x k12,07

202 (x)

I e,

Z V[X k= 172 X] (2.16)

On the other hand,

[ g0y aF, (=" gt d(=5,.0)),
B B

where S, (1)=1—F, (t)=P(S,/n>1) is the left continuous, nonincreas-
ing survival function. Again, integrating by parts, applying Chebyshev’s
inequality, and repeating (2.13), (2.14), (2.15), and (2.16) we have

202(x)

Z V[x x+ k127 (217)

“ g () dF, ()| <
I

where for k=0 we take V|, z-127= V[, ). Combining (2.12), (2.16),
and (2.17) we get

202(x) 20’2()C) +1

ILn(gx!x)l< Z V1k+ Vln

k=0

Z Vlk

This completes the proof of Lemma 3.

Proof of Theorem 2. First note that for all ¢

()= g 1)+ F(x) +3(f(x*) = f(x7)) sgn (1),

where g.(¢) and sgn, (z) are given by (2.2) and (2.6), respectively. By
linearity of the operator, the triangular inequality, and Lemmas 1 and 3 the
bound follows by taking Q(x)= R(x)/2. To show the sharpness of the
asymptotic rate of convergence, consider the functions

[t — x| if te[x—¢ x+¢]
= 1
p1)= { it r¢[x—sg x+el, (2.18)
where ¢ >0, and
1 if t>x
g(t)=< 1 if r=x (2.19)
0 if t<x
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It is easy to show (see Khan [6] for a more general result) that

lim n2E|S,/n— x| =/2/n a(x).

By Chebyshev’s inequality,
in=\/r—zsP{|Sn/n—~x|>s}—+0 as n-—> o0,

and by the Cauchy-Schwarz and Chebyshev inequalities

\/ﬁj t—x| dF, ()~0 as n— .
fr—xi>e¢
Therefore,

SAILp, %) = px) = A+ |

je - x|

|t — x| dF, () » \/2/m o(x)

as n—>o. On the other hand, p(x*)=p(x")=p(x)=p(x)=0,
g.(t)=p(¢) and for sufficiently large n,

[1/62] n 2

s 2
VIk x =V—oo,oo x \N&x) — T = + 7
I, Vus)=Vwate) 3 (Vis)= )+ 3

Therefore for sufficiently large n,

Y Vg <u+v/n,
k=0

where pu and v are constants. Therefore the first term on the right side of
(2.1) is asymptotically sharp for p(r). Similarly consider ¢g(¢). Now,
g(x)=g(x), g,(1)=0 and

|L,(q, x)— g(x)| = 3| L,(sgn,, x)|
or
ILa(g, x) = G(x)| = |F ¥ (0) ~ G*(0) — (3)P(S,/n=x)I.  (2.20)

Now it is well known (cf. Feller {3, p. 512]) that if F; () is absolutely
continuous with respect to the Lebesgue measure then

E(X,—x)’ 1
F* —G*¥(t) —————T (1 -t} g*(t) =0 — 221
R N AL o \/}_1) (221)
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uniformly in ¢, where g*(¢) is the first derivative of G*(¢). Therefore, for the
case when F; () is absolutely continuous with respect to the Lebesgue
measure, P(S,/n=x)=0, and the asymptotic sharpness of the second term
in (2.1) follows. Furthermore, if F; () is a lattice distribution, then (2.20)
reduces to

|Lu(g, x) = §(x)| = |E, (0)~ G*(0)],

where F',,,x(O)z (F¥.(0)+ F¥,(07))/2. Again it is well known (Feller [3,
p- 514) that (2.21) holds for the lattice distribution where F¥ (¢) is replaced
by F, () and ¢ is a lattice point. Consequently, the asymptotic sharpness
of the bound follows. This completes the proof of Theorem 2.

The proof of Corollary 1 is obvious. To prove Corollary 2, note that for
all ¢

F() = g.0) + F(x)+ 3 (x) = flx 7)) sgnl0) + F(x) 3.(0),

where g, (1) and sgn (¢) are given by (2.2) and (2.6), respectively, and 6,(7)
is provided in Lemma 2 and f(x)=f(x)—f(x). Now the proof of the
corollary is straightforward by using Lemma 2. The proof of Corollary 3 is
also straightforward.

3. SpecIAL CASES

In the following we provide a few examples for the classical operators.
The emphasis is on the explicit values of P(x) and Q(x) in each case.

3.1. Bernstein Operator
Let P(X,=1)=x=1—P(X,=0), xe(0,1). Then
L,(f. x)=B,(f, x).
Now, ¢*(x) =x(1 — x) and E|X, — x|®> = 0*(x)(2x> — 2x + 1). Therefore,

2(1-x)+1 ¢ 2(2x2 —2x+ 1)

[B,(f, x)—f(x)l\—‘—;——— Z Vlk(gx)"'__'—\/’T—t_——)—]( x) (3.1

We may remark in passing that I,=[x—k~'"% x+k 2] could be
replaced by I¥=[x—xk 12 x+ (1—x)k~"?] and that (3.1) would be
modified as

“ 2(2x*—2x+1)

(g, 32
Y Virlen) + = e T, 32)
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where K,(x) is given in Theorem 1 and n>1. This result improves the
bound obtained by Cheng (Theorem 1).

3.2. Szdsz Operator

Let P(X,=j=e *x/(j1)7', j=0,1,... Then we obtain the Szisz
operator S,(f, x)

(nx)*

ki’

LX) =S,fix)=e ™ 3 flkjn)

where f(t) is defined over [0, c0). Now, o%(x)=x and

{x] k
ElX,—x]?=x+2¢ ) (x— k)3—~.
k=0

Therefore, if f€ BVT0, ) then for all xe (0, oo) we have

2E|X| —x|?

18,0/, ) Fx) < 2 zv gt ST 63)

One could use a simple bound for E|X; — x|®> <8x>+ 6x?+ x to have

2x4+1 2 2(8x% + 6x + 1)

1Su(fs X) = F(x) < 2 Vi(g:)+ **‘——\/‘;—‘*f(

3.3. Baskakov Operator

Now let P(X,=j)=1/(1+x)}x/(1+x)), j=0,1,..,xe(0, c0). In this
case, (1.4) defines the Baskakov operator B}{f, x) as follows:

B =007 § s (" ES) 6

Now o2(x)=x{1 +x) and

[x] J
E1X, — x| =2x7 4 3¢ —
1X; —x| x* 4+ x+x+ Z( ) <1+x>

IBX(f, x)— f(x)l < Y Vilgad+

Py T 3/2\[}‘( x).
(3.5)

2x(1+x)+1 & 2E|X, —x|?
I3
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Again one could use the bound E|X, — x| < 16x> +9x2 + x to obtain

2x(1—;x)+1 Z V(g + 2(16x> t/2x+1)f( Y
(1+x)"y/nx

[BX(f, x)— f(x| <
3.4. Gamma Operator
Let X, have probability density over (0, o)

Fe() (l/x)e i >0
A= if y<o.

Then (1.4) defines the Gamma operator

G(f, %)= f fyin) y"= e dy.
Now o°’(x)=x> and E|X,— x|3—2x3(6/e~ 1). Hence, for any
feBV[0, cv) and x (0, c0) we have

_ 1z 6
G, x)— )] < 2L P g+ 182D /} Diw @6

3.5. Weierstrass Operator

Let X, have probability density defined over (—oo, w0) by g*(y—x)
where g*(y) is the derivative of G*(y) given in (2.5). Then L ,(f, x) reduces
to the Weierstrass operator

W, x)=\/%f: Fx+u) exp(— (mi2)2) du.

Now, ¢%(x)=1 and by Corollary 1 we have

W)~ fRI< S V(g
k=0

for fe BV(— o0, o) and x & (— o0, o0) regardless of the size of the saltus of

fatx
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